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Abstract 

Transitions between two or more fluids may result in changes of the total amount of 
radiation in the universe without violating overall energy conservation. Special rate 
equations for such processes are discussed, for which the radius of the universe as a 
function of time can be found by numerical integration of a single differential equation, 
and the radiation density can then be easily obtained, although it must be verified as 
positive for all times. The integrations are carried out and reported here for the simplest 
rate equation for two fluids for various values of the initial mass of one fluid, the transition 
rate, and the cosmological constant. 

1. Introduction 

The early interest in the problem of interacting matter  and radiation in 
cosmology shows a desire to reconcile thermodynamic predictions on the 
ultimate fate of  the universe with the seemingly unrelated predictions of  
cosmology (Tolman, 1931a, 1931b, 1932, 1934). This question is still 
important  today (Pegg, 1972), but modern research is more concerned with 
the evolution of  the universe f rom the still unknown initial state. This 
deterministic approach to cosmology is so much more promising today than 
at earlier times, because of  our greatly increased knowledge of elementary 
particles and their interactions. However, particle physics, which derives its 
data f rom studies over comparatively short time intervals, cannot give in- 
formation on persistent trends over cosmic time scales and may therefore 
be unable to explain the evolution of the universe completely. We offer here 
some estimates of  the cumulative effects of  some processes which are con- 
sistent with energy and momentum conservation as well as the conservation 
laws associated with symmetries within the families of  elementary particles. 
We accept the postulates of  isotropy and homogeneity of  the universe and 
use a phenomenological description for two interacting fluids, with one 
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fluid increasing at the expense of the other one and giving rise to a gradually 
increasing radiation density (McIntosh, 1968; May & McVittie, 1970). 

The three components have a common bulk velocity and conservation of 
momentum is trivially satisfied. Energy is not conserved for each component 
separately, but the energy of each component may change according to a 
rate equation which is restricted only by the requirement of overall energy 
conservation. Since general rate equations lead to several coupled differential 
equations, we make some simplifying assumptions. First, we assume that 
the transitions between the matter fluids are independent of the amount of 
radiation present, i.e. no stimulated transitions do occur. Secondly, we 
assume that the rate equations contain the derivative of the world radius in 
such a way that we can solve them explicitly in terms of the world radius. 
The densities can then be inserted into Einstein's equations, or rather a 
suitable combination of Einstein's equations which does not contain the 
radiation density. We obtain then the radius of the universe as a function of 
time, and calculate finally the radiation density either from the remaining 
Einstein equations, or from the energy conservation law. In either case the 
radiation density may not be positive for all times, and solutions for which 
it becomes negative must be rejected. It should perhaps be pointed 
out that the time variation of the densities of the fluids gives a physical 
meaning to the concept of the age of the universe. If onty matter fluids were 
present and no transitions occurred, the age of the universe would 
have only geometrical meaning, since the fluids would expand and contract 
together according to the cosmological solution. Of course, the age of the 
real universe is determined by a great number of parameters, viz. the 
relative frequencies of all elementary particles and their antiparticles. But 
the models presented in this paper are probably the simplest models which 
conform to the demand that the age of the universe is related to its physical 
features. 

2. The Rate Equations 

Basic to the theory is the conservation of energy and momentum, 
expressed in 

('V/(-g)pVO,, +P(V'(-g) V'),~ = 0 (2.1) 

and the hydrodynamic equations. The latter need not be considered if the 
various fluids have one common bulk velocity; and a co-moving coordinate 
system with V ° = 1, V 1 = V 2= V 3 ---0 can be used. We may decompose 
in (2.1) the total energy density 

P = Pl + P2 + u (2.2) 

and, accordingly, the total pressure 

P =Pl  +P2 + ½u. (2.3) 
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The interactions which lead to non-conservation of the individual energies 
can be described by rate equations for the fluids i = 1 and 2 

(X/(-g) p, V~),, + p~(x/(-g) V~),, = f~ (2.4) 
with 

Zf~ + (a/(-g)uV~),~ + ~}u(~/(-g) V'),~ = 0 (2.5) 

where the functionsf~ could depend on Pk and on a / - g  but, as explained in 
the introduction, should not  depend on u. Equation (2.5) can be considered 
as a differential equation for u which can be solved when Pk and ~ / - g  have 
been determined. We direct now our attention to (2.4) and assume that f~ 
is a scalar density and write 

f~ = 5/(-g)A~ + ('V/(-g) V~').~B~ (2.6) 

where At and B~ are scalar functions ofpk, which do not contain the metric 
tensor. They describe phenomenologicaUy a fundamental law of  interaction 
and should be form-invariant. On the other hand, the scalar functions Pk 
may depend on x ~ explicitly as well as implicitly through the metric tensor 
g~B- In the co-moving frame of reference, only differentiation with respect 
to x ° = t will occur; and if equations (2.4) should be soluble without prior 
knowledge of  a / -g ,  the conditions 

Op~ 
0--t- = A, (2.7) 

Op~ 
+ p, + p ,  = B, (2.8) 

must be satisfied. We get then the integrability condition 

a~/~_g (~/(-g) A,) = 
a 

~i (B, - p,) (2.9) 

and recalling that A~ and B~ are functions ofpk only, we can rewrite (2.9) 

OA~ OBf Opi OAi 
Bk -- ff~p A~ + A, ~ St = Op--~k (Pk +Pk) (2.10) 

These conditions define a fairly general class of rate equations from which 
we will single out a few special cases. The numerical integration in the next 
section is based on the choice 

A1 = -c~pa, B1 = 0, Pl =P2 = 0 (2.11) 

which describes the gradual decrease of the density of the first fluid. I f  the 
first fluid is identified with nucleons and the second fluid describes a com- 
plex nucleus with atomic weight A, we must observe the conservation law 
for the number of nucleons. Introducing the number densities nl and n2, the 
nucleon mass m and the binding energy e of  the second fluid, we have 

Pl = 1ll mcZ, P 2  = n2(Amc 2 -- e) (2.12) 
4 
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and since the total nucleon number (nl + n2A) should remain constant, we 
must demand that 

pl(1 -- e/Amc 2) + P2 (2.13) 

remains constant. We will neglect the pressure of the matter fluids and set 
in accordance with (2.13) 

A2 = a(1 - e/Amc 2) Pl (2.I4) 

This is a simple model for the process of fusion of hydrogen into some 
complex nucleus and if the sign of a is reversed the inverse process of de- 
composition is described. Such interaction terms are equally possible with 
the B, terms instead of the At terms. Equation (2.7) shows that p, does not 
depend explicitly on time and the solution follows from (2.8) 

Pi = const. (__g)ll2(l+a) (2.15) 

as compared with the solution in the previous case (2.11) 

p, = const. (_g)-ln e-,t (2.16) 

The rate equation with A~ = 0 can be treated easily without the arguments 
leading to (2.7) and (2.8). In the co-moving frame ~/(goo) V ° = 1 and by 
transformation to a new time coordinate 

~( -g~  lg22 g33) ~ e -~ (2.17) 

one obtains a simple linear equation for Pk. This is the approach used by 
Hughston & Shepley (1970). We consider finally general linear forms of 
A~ and B~ in Pk: 

Ai = cqkpk, B~ = fl~kPk (2.18) 

and neglect again the pressure. Equation (2.10) leads to the conditions 

(chkflu -- fi,,ak~) P, = 0 (2.19) 

and either one of the matrices is the unit matrix, or both are diagonal. We 
find from (2.7) 

Pt = C~e ~1' + D~e =2~ (2.20) 

where ~1 and 0¢2 are the roots of a secular equation and C~ and D~ are the 
corresponding solutions. They will be functions of  a / - g  and can be deter- 
mined from (2.8). It can be seen by inspection that these functions, and 
therefore also p,, will be inversely proportional to x / - g  with a rather com- 
plicated power. The ultimate justification of any rate equation must come 
from a basic kinetic theory (Ehlers, 1971; Stewart, 1971), and one might 
expect quadratic expressions in the densities in analogy to Boltzmann's 
equation. 
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3. W o r m  Radius and Radiation Densi ty  

We seek to eliminate the radiation density u from Einstein's equation and 
write for the source term 

T~a + 4-uV~3 V B - ½u~ a (3.1) 

where T "B is the energy-momentum tensor of  the matter fluids. Quite 
generally, contraction with V~ V B gives an expression for u which can be 
inserted in Einstein's equation. It must be assumed that the equation of 
state for matter differs f romp = ½p, valid for radiation. In the homogeneous, 
isotropic model, we may simply use the trace of  Einstein's equation which is 
independent of  u. In the usual coordinate frame 

R2(t) 
goo = 1, gl l  = g22 = g33 (1 + kr2/4) z (3.2) 

where R( t )  is the radius of the universe and k = -1 ,  0 or +1, the trace is 
equivalent to 

-Jr- R2 _}_ k = ~ A R  2 + 3 (pl + p2) R 2 (3.3) 
, I  

Since the numerical calculations were carried out only for the elliptic case 
k = 1, we will consider now only this case. The matter densities follow from 
(2.11) and (2.14) 

P l = M1/  R 3 re2. e -~(t-'°) (3.4) 

P2 = M2/R  a zr2 - MI(1 - e/Amc2)/R a n2. (e-,(Ho) _ 1) (3.5) 

The total masses of  the fluids at the time to were here denoted with M~ and 
M2 and the volume of the dosed universe was assumed to be n2 R a. The sum 
of (3.4) and (3.5), which alone enters in (3.3), can be written as 

Px + P2 = (M1 + M2) /R  3 n 2 + M1 rl/R 3 z z • (e -~(H°) - I) (3.6) 

where we have introduced the 'efficiency' 

rl = e /Amc 2 (3.7) 

which, besides M~ and ~ provides a measure for the degree of the mass 
depletion. The value for ~/for the spontaneous fusion of hydrogen into iron 
would be approximately 0-01, but significant deviations of  R( t )  from the 
non-radiating case occur only for somewhat larger values ~/and we have 
therefore extended the calculations for values of ~/up to unity (Knight, 
1972). The decay constant c~ was chosen in the range between 0.01 and 0-1 
times 10 -9 (years)-~, with the lower limit corresponding to the mass depletion 
of  our sun, assuming an energy loss of  10 a3 erg/sec (Sciama, 1971), and an 
efficiency of 0"01. The world radius R with the dimension of  a length and 
measured in units of  109 light years was given the initial value I0 at time to. 
The initial slope, determined by Hubble's constant, was taken as 0.7, with 
the velocity of light having the value unity in the dimensions light years and 
years. We calculated the world radius for various values of  the cosmological 
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constant A, mainly to determine the shift of the critical value, which for the 
non-radiating case is given by 

Ac = ~2/16M 2 (3.8) 

We varied/1 between ±0.005 (109 light years) -2. Outside this range the effect 
of the constant was so predominant that radiative effects were negligible 
in comparison. It remains to discuss the values for the masses M1 and M2 
which were used in our computation. Since the curves R(t) showed little 
spread in the short time interval t < to, we avoided the difficult problem of 
selecting realistic values and neglected M2 altogether. This implies that the 
universe contains only the first fluid at time to and, although the density of 
the second fluid may become considerable in the future t > to, it has neces- 
sarily negative densities in the past t < to. The initial conditions are quite 
generally connected by the well-known first-order differential equation 
(Robertson & Noonan, 1968) 

3(/~ z + 1)/R z = A + 81rp (3.9) 

Neglecting here M2 and therefore P2 at time to, and keeping Hubble's 
constant and the radius of the universe fixed, excessively large values of Pl 
and M1 wilt result in negative values of u. For vanishing cosmological 
constant, the limiting value of Mx is 18 × 10 9 light years, corresponding to a 
mass density of 3 × 10 -30 g/cm 3. Larger values of M~ will require a negative 
cosmological constant to ensure a positive radiation density. On the other 
hand, much smaller values for M1 would require either larger values for the 
cosmological constant than one is willing to accept or unreasonably large 
radiation densities. Reasonable values can be inferred from the known 
black-body temperature 

u/pl ~ 7 × 10 -4 (3.10) 

which justifies the use of the critical value for p~ as derived from (3.9) for 
u = 0 .  

The figure shows the general trend of the curves R(t) with increasing 
efficiency r/. The more effective the interaction in producing radiation, the 
faster the collapse of the universe, and we found the same trend to hold as 
the decay constant g was increased. One may expect the reverse trend for 
negative values of ~, describing a decrease of radiation. The critical value 
of the cosmological constant, given by (3.8) in the non-radiating case, is 
accordingly shifted to higher values as t /or g are given finite positive values. 
For M = 15.5, (3.8) gives Ac = 0.0025, yet even for A = 0.003 the universe 
would collapse for the admittedly rather large efficiency I /= 1. On the whole 
the curves do not differ greatly from the usual curves for non-interacting 
fluids, although there are considerable quantitative differences in the later 
stages of the universe. Only for larger 3//1, exceeding the critical value derived 
from (3.9) and leading therefore to negative radiation pressures, do we find 
a greater sensitivity towards variation of the efficiency. For instance, 
M1 -- 31, A = -0"01, a = 0-1 gives for t /=  0 and for t /=  0.01 smooth (almost) 
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periodic functions with a min imum radius o f  the universe o f  about  3 x 109 
light years. But for  q = 0.1, we see again the familiar collapse to a point-size 
universe in about  25 x 109 years. Fo r  the same mass and A = 0, the curves 
for  efficiencies between zero and 0-1 are smooth  and differentiable, a l though 
the periods and the minima differ greatly. Of  course, negative radiation 
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Figure 1--The world radius as a function of time for the mass M1 = 15'5 and various 
values of the cosmological constant and the efficiency ~/. The decay constant was assumed 
as 0,1 × 10 -9 (years) -1 in every case. 

pressures may  not  be objectionable, when they occur  under  extreme con- 
ditions, where the known fundamental  theories may  fail in any case. How-  
ever, we find for  our  model  f rom (2.5), (2.11) and (2.14) 

t 

R4u = const. + eq f R4pldt (3.11) 

that  the radiation density is monotonical ly  increasing and negative values 
are due to improper  initial values as mentioned before in connect ion with 
(3.9). 
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